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The Kolmogorov-Johnson-Mehl-Avrami �KJMA� theory fails to treat nonrandom nucleation and overgrowth
processes. However, the very tractability of their solution in describing experimental data caused researchers to
slightly modify KJMA’s differential equation so as to extend the applicability of the model. In doing this a
phenomenological parameter is introduced, named as the impingement factor. Here we analyze, in depth, the
limits within which the phenomenological approach is suitable for sidestepping the difficulty of nonrandom
nucleation. In particular we tackled two cases: instantaneous cluster growth where cluster overgrowth prevails
and the constant nucleation rate of spatially correlated nuclei according to the hard-core model. In the last part
of the paper we show that Avrami’s general set theory is equivalent to the statistical mechanics of rigid disks.
This permits a deeper appreciation of the KJMA theory and the nonrandom nonsimultaneous kinetics.
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I. INTRODUCTION

Owing to its simplicity, the theory developed by Kolmog-
orov, Johnson, Mehl, and Avrami �KJMA� between the end
of the 1930s and the beginning of the 1940s has been widely
used in materials science for describing phase transformation
kinetics occurring via nucleation and growth processes.1–3 In
particular, apart from the early applications to the metallurgy,
the theory has been recently applied to study the phase sepa-
rations in multicomponent alloys,4 the film growth on solid
substrates,5 the kinetics of Ising lattice-gas model,6 and the
DNA replication,7 just to cite a few among the many systems
studied. For instance, in the case of film growth, the KJMA
approach has been employed to determine physical quantities
such as the film roughness, the autocorrelation function, and
the perimeter of the deposit.5,8,9 Moreover, significative ad-
vancement has been done in the ambit of numerical ap-
proaches which permit to obtain information on the morphol-
ogy of the system as well as to check the reliability of the
KJMA kinetics for modeling systems which are not consis-
tent with the theoretical premises of the theory.10–16 In fact,
the applicability of the theory is subjected to some condi-
tions. The most peculiar concerns the nucleation phenomena
that are required to be Poissonian throughout the whole
space where the transition takes place. It is this very assump-
tion that allows the time dependence of transformed phase to
be determined analytically.1 As far as the growth law is con-
cerned, the KJMA model does not deal with the anisotropic
growth of the nuclei �which gives rise to the so-called shield-
ing effect�14,17,18 as well as with growth laws where “phan-
tom overgrowth” is permitted.19,20 In addition, the growth
law has to be the same for all nuclei and the phase transition
occurs homogeneously throughout the sample; i.e., the sys-
tem has to be translationally invariant.21 It is not surprising
that together with many real systems that satisfy the KJMA
assumption, there exist as many that do not. In these cases
the kinetics not only deviate from the KJMA one but also

change substantially, among others, the island size distribu-
tion function and the kinetics of number of islands. This is
due basically to the different mechanism of nucleation and
growth as it occurs in thin-film growth �two dimensional
�2D��. A sharp example of the difference between the island
size distribution function is given in the work of Farjas and
Roura,22 based on KJMA approach, as compared with that of
Mulheran and Blackman,23 based on Voronoi tessellation.

In the middle of 1950s, in an attempt to yield a more
general kinetic expression, a phenomenological equation was
proposed.24,25 The idea is to introduce a parameter, �, in the
2D KJMA expression �the extension to any spatial dimension
is straightforward� as follows:

dS

dSe
= �1 − S��, �1�

where S is the fraction of the transformed phase and Se is the
extended surface of the new phase �see below�. For �=1 Eq.
�1� reduces to the KJMA equation, while for �=2 it reduces
to the Austin-Rickett �AR� equation26 that is expected to hold
in the case of film growth in high supersaturation environ-
ment. It is worth citing that Eq. �1� recently has been shown
to be suitable for describing several precipitation
reactions.4,27 Usually Se is taken as a phenomenological
power law, i.e., Se=Ktn, where t is the running time and K
and n are constants, with the latter called as Avrami’s expo-
nent. Nevertheless, it is important to underline that the defi-
nition of extended surface, in the spirit of Avrami’s defini-
tion, where nucleation centers exist until the beginning of the
transition, is the total surface of the new phase independent
of the overlaps among clusters arising by all the allowed
nucleation events. An example of spatially correlated nucle-
ation is displayed in Fig. 1. In particular it refers to a hard-
core correlation among nuclei; that is, nucleation events are
not permitted within a circle of radius Rhc concentric with a
nucleus.
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Recently a detailed study on the breakdown of the KJMA
assumptions and its effect on the value of both the impinge-
ment factor and Avrami’s exponent in kinetics equation �1�
has been performed.27 This survey deals with several pos-
sible mechanisms which cause the transformation kinetics to
deviate from the KJMA description. Analysis of each single
mechanism, separately, also made it possible �by means of
the superposition of Gaussian distributions� to estimate the
contribution of each mechanism to the experimental kinetics.
The breakdown of the KJMA hypothesis considered in Refs.
21 and 27 includes, for example, inhomogeneity of the
sample, growth rates that vary with time and space, and
transformation with anisotropic growths. In all these cases,
however, the nucleation process is still taken as
Poissonian—or locally Poissonian in the case of inhomoge-
neous systems—in the whole space. In other words, the
KJMA requirement of random nucleation process is assumed
to hold. However, the Poissonian distribution of nuclei is
certainly not fulfilled in thin-film growth where two nuclei
cannot be formed at relative distance less, on average, than
the monomer diffusion length;5 i.e., nucleation is a non-
Poissonian process. This was shown, experimentally, through
the measurements of the pair-correlation function as done in
Ref. 28. Moreover, even in the three-dimensional �3D� case,
an example exists concerning nonrandom nucleation as in
the process of primary crystallization.20 Several cases on
nonuniform random nucleation have been studied by em-
ploying probability theory29 and numerical simulations.30 It
is worth reminding that Avrami in his 1939 celebrated paper
in fact provided the series expansion describing, formally,
any kinetic transition whatever the nucleation process is.

In this paper we deal with nonuniform nucleation in two
dimensions, which, as reported above, is of particular interest
in film growth. For reasons that will soon be clear, the �
parameter is written as �=1−�, where � is the “impinge-
ment factor.”

In this paper: �i� we discuss the meaning of the impinge-
ment factor in the case of spatially correlated nucleation for
both instantaneous growth and continuous nucleation rate;
and �ii� we bridge the gap between Avrami’s set theory and

the statistical mechanics of rigid disks. This permits us to
give an assessment of the possible interpretation of the AR
equation based on the non-Poissonian nature of the nucle-
ation process. Our study shows that the � value depends on
the nucleation and growth mode; that is, the impingement
factor can be used to characterize the phase transformation
typology.

The paper is divided as follows: Section II deals with
phase transitions ruled by the instantaneous growth, where
any modeling based on the KJMA theory fails. Section III is
devoted to the case of spatially correlated nuclei, where the
kinetics is ruled by constant nucleation rate and linear
growth law. Section IV is concerned on the connection be-
tween Avrami’s set theory and the statistical thermodynamics
of rigid disks.

II. PHASE TRANSITIONS RULED BY INSTANTANEOUS
GROWTH

This section deals with transformation in which each
nucleus, once nucleated, grows instantaneously to a given
constant size R. This peculiar growth mode is of importance
in the formation of multilayer structures and interfaces as
reported in Ref. 31 �and references therein�. It is apparent
that under these circumstances the KJMA theory does not
apply because of the overgrowth of the phantom nuclei.19,31

To investigate the meaning of the impingement factor, we
first solve the kinetic problem and then compare its solution
with that obtained by using Eq. �1�. On the basis of the
above-mentioned definition of Se, we get

Se�t� = N�t��R2, �2�

where R is the nucleus radius, N�t� is the number density of
actual nuclei, i.e., the number of nucleation events. The so-
lution of Eq. �1� therefore reads ���1; ��0; �Se�1�

S = 1 − �1 − �Se�1/�. �3�

The same problem can be solved exactly by employing
the statistical method based on the correlation functions. In
fact, the nucleation being prohibited within an already trans-
formed region, the nuclei turn out to be spatially correlated.
The fraction of the transformed phase, S�t�, can be written
following the theory of Kolmogorov1 as

S�t� = 1 − Q�t� , �4�

where Q�t� is the probability that the domain �R, namely, a
circle of radius R, is empty of nucleation centers. This prob-
ability has been computed by several authors32–34 in terms of
either n-particle distribution functions or n-particle correla-
tion functions. Here, we report three expressions for this
probability that will be employed throughout the paper.
These probabilities prove to be functions of time as the
nucleus density depends on time; they are

Q��R� = 1 + �
m=1

�
�− 1�m

m!
�

�R

fm�r1, . . . ,rm�dr1 ¯ drm,

�5�

FIG. 1. Schematic representation of allowed nucleation centers.
Dots a and b are both possible nucleation centers. In the figure two
configurations are shown for cluster radii R1 and R2. For R=R2 the
pre-existing nucleation center b might become a phantom nucleus,
while a has a chance to start growing. Because of the correlation
�R=Rhc�, no nuclei can lay within the correlation zone; i.e., a nucle-
ation event at c is not allowed.
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Q��R� = 1 + �
m=1

�
�− 1�m

m!
� fm�r1, . . . ,rm��m�r1, . . . ,rm�

	dr1 ¯ drm, �6�

Q��R� = exp��
m=1

�
�− 1�m

m!
�

�R

gm�r1, . . . ,rm�dr1 ¯ drm� ,

�7�

where fm�r1 , . . . ,rm� is the m-dot distribution function,
gm�r1 , . . . ,rm� is the m-dot correlation function, and
�m�r1 , . . . ,rm� is the total area �per unitary surface� of over-
lap of m disks of radius R when their centers are at the stated
positions. If not stated explicitly, integration is intended over
the entire space. It goes without saying that Eqs. �5�–�7� can
be similarly employed to evaluate the probability of having
no nuclei in a circle of generical radius X, which can also be
a function of time.

The m-dot correlation functions are related to the m-dot
distribution functions by the following cluster expansion:34

fm�r1, . . . ,rm� = �
n

�
P

�g1�n1�g2�n2
¯ �gm�nm, �8�

where the components of the vector n satisfy the condition
�kknk=m and P indicates that only the distinct contributions
arising from the permutation of the m variables r1 , . . . ,rm in
the product of the g’s have to be retained in the sum. The
first two distribution functions are given by

f1�r1� = g1�r1� , �9�

f2�r1,r2� = g1�r1�g1�r2� + g2�r1,r2� . �10�

In order to check the worth of the phenomenological ap-
proach, it is convenient to expand Eq. �3� in Taylor’s series
and to compare it with the exact expansion occurring in Eq.
�5�. Equation �3� then becomes

Q = 1 + �
n=1

�
�− 1�n

n!
anSe

n, �11�

where an= �1− �n−1���an−1 and a0=1. However, before
comparing the two series, some considerations on Eq. �5� are
in order.

In fact, Eq. �5� is equal to the fraction of surface that is
not covered by the disks. On the basis of geometrical con-
siderations, it is clear that if all distances transform according
to X→
X, then N→N /
2, where 
 is the scaling parameter.
Naturally the Q��R� is invariant under such a transformation.
In other words, this probability is a zero-order homogeneous
function in 
. Consequently Q��R� is expected to be a func-
tion of Se=N�R2 �see also the Appendix�.

However, one must bear in mind that, although for the
problem at hand only terms up to m=5 contribute to the sum
�Eq. �5��—in fact the requirement of finding m dots within
the circle of radius R cannot be satisfied for m�5; i.e.,
fm�5=0 in this domain35—Eq. �5� is a power series of Se. For
instance, the radial distribution function of hard disks,
g�r1 ,r2�=

f2�r1,r2�
N2 , is in the form

g��� = H�� − R��1 + �
n=1

�

Nncn��,R�� , �12�

where H�x� denotes the Heaviside function, �= 	r1−r2	, and
the system is assumed to be homogeneous and isotropic. In
Eq. �12� the sum runs over all �n+2�-dot connected diagrams
�cn�� ,R��, where the integration is carried out over the dots
r3 ,r4 , . . . ,rn. Furthermore, since for a system of hard disks,
cn�� ,R� terms are reduced to 2n-dimensional integrals over
the areas of n overlapping disks, these terms will scale as
cnR2n. It turns out that g��� is also a power series of the
extended surface.

In the case of a homogeneous system, f1=N and the
evaluation of the term m=1 in Eq. �5� is just equal to −Se. As
far as the term m=2 is concerned, we evaluate only the con-
tribution of the lowest term of the diagrammatic expansion in
Eq. �12�. From Eq. �5� one attains

1

2
�

�R

f2�r1,r2�dr1dr2 =
N2

2
�

�R

H�	r1 − r2	 − R�dr1dr2,

�13�

where the integration domain is the circle of radius R. Since
both r1 and r2 have to lie in this circle, it follows that

�R

�1−H��−R��dr1dr2=2�
0
RrdrA�r ,R�, where A�r ,R� is

the overlap area of two disks of radius R at relative distance
r. This integral is easily calculated as

�
�R

�1 − H�� − R��dr1dr2

= 2��
0

R

rdr4R2�
r/2R

1
�1 − y2dy

= 8�R4�
0

1

zdz�
z/2

1

�1 − y2dy

= �1 −
33/2

4�
��R2�2. �14�

By equating the terms of order Se
2 in the two series, Eqs.

�5� and �11�, makes it possible, for the problem studied in
this section, to identify the impingement factor with the term

� = �0 = �1 −
33/2

4�
 � −

1

Se
2�

�R

g2
�0��r1,r2�dr1dr2, �15�

or

� �
1

Se
2�

�R

f2
�0��r1,r2�dr1dr2, �16�

where the superscript indicates the lowest-order terms and
the following relation was employed: g2

�0����=N2�H��−R�
−1�. The numerical value of � computed here, �0, coincides
with that derived in Ref. 31 by employing a different
method. Specifically, in this work the impingement factor is
introduced to account for phantom overgrowth which, in this
context, is related to the overlap between actual and phan-
tom nuclei. Our computation shows that the phenomenologi-
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cal parameter � entering Eq. �1� acquires a remarkable
meaning, being connected to the pair-correlation function of
the actual nuclei which is different from zero. The question
now arises as to the exactness of solution �3� for �=�0. To
answer this question, one should compute the higher-order
terms of the expansion and compare them to those of Eq.
�11�. However, this is a very difficult, not to say impossible
task since even the computation of the low-order term at m
=3 requires the knowledge of the three-dot distribution func-
tion, for which no exact analytic expression is available.
Even the approximate expression based on Kirkwood’s su-
perposition assumption leads to a quite complex computation
that, in the end, is not reliable for establishing the correctness
of Eq. �11�. We have therefore adopted a different approach
by exploiting the statistical implications of Eq. �3� to deal
with a different but better understood process: the random
sequential adsorption �RSA�. It consists of throwing disks of
radius R on a surface where overlaps among them are not
permitted.35–37 The rate at which disks are deposited on the
surface is proportional to the probability that a landing disk
finds enough room to accommodate itself without overlap-
ping other disks, i.e., the probability of finding a circle of
radius �=2R empty of disk centers. The adsorption rate then
becomes

dN

dt
= JQ����� , �17�

where N is the number density of adsorbed disks, J is the
flux of incoming disks on the surface, and the subscript of Q
indicates the “hard-core” radius ���. Furthermore, the Q
probability, thanks to Eq. �3�, is

Q����� = �1 − �0�N��2��1/�0, �18�

and the adsorption rate becomes

dN

dt
= J�1 − �4N�R2��0�1/�0. �19�

By recalling that in the RSA S=Se=N�R2, it follows that

dN

dt
= J�1 − 4S�0�1/�0, �20�

which implies the jamming point � dN
dt =0� S�= 1

4�0
=0.426.

The latter differs from the value obtained in the literature for
ordinary RSA of identical disks: S�=0.542 �Ref. 37� and
S�=0.547.38,39 On this basis, we conclude that series expan-
sion �11� is not the exact solution of the kinetics. Neverthe-
less, on the basis of Monte Carlo simulations, it was shown
in Ref. 40 that Eq. �11� is indeed an excellent approximation.
This can also be appreciated by studying the RSA kinetics in
the coverage domain. To this end Eq. �20� is compared in
Fig. 2 to the numerical kinetics in Ref. 35 at unitary J; as it
appears the agreement between the two kinetics is excellent.
Also shown in the same figure are the kinetics computed by
using the probability functions given through Eqs. �5� and
�7� by retaining terms up to the second order in both distri-
bution and correlation functions and where only the Heavi-
side contribution to the radial distribution function has been
considered. In the first case, the kinetics is Q�����=1

−N��2+ 1
2
��

f2
�0�dr1dr2=1−4S+8�1−�0�S2, where �=2R.

Also displayed in the same figure is the approximate kinetics
dN
dt exp�−4S�1+2S��, which was derived in Ref. 34 by de-
coupling the integral of the pair-correlation function in
Eq. �7�.

III. CONSTANT NUCLEATION RATE AND LINEAR
GROWTH

In this section we deal with spatially correlated nuclei
according to the hard-core model; i.e., the distance between
two nuclei cannot be shorter than Rhc. The growth law of
cluster is considered to be linear and the nucleation rate con-
stant. Under these hypotheses the kinetics has been solved,
analytically, in Refs. 41 and 42. In this case the stochastic
theory requires the definition of different classes of dots �at
odds with the simultaneous nucleation case� corresponding
to different nucleation times and, in turn, to different sizes of
the nuclei.41 Furthermore, in order to obtain a manageable
analytical expression, some approximations have been em-
ployed and their validity has been tested by means of Monte
Carlo simulations. Also in this case, owing to the correlation
among nuclei, the kinetics is given in terms of the extended
surface Se. In the case of constant nucleation rate, Se

= 1
3 I�a2t3, with R�t�=at as the nucleus growth law and I as

the nucleation rate. In addition, since the nucleation process
is not simultaneous, even in this case some dots can be cap-
tured by the growing phase, becoming “phantom” clusters.
According to Refs. 41 and 42, the solution of the kinetics
reads

FIG. 2. �Color online� Kinetics of random sequential adsorption
of rigid disks in the coverage domain. The adsorption rates dN /dt,
as obtained by numerical simulation, are shown as full squares. The
behavior of kinetics equation �20�, in terms of the impingement
factor, is reported as a solid line. The short dashed line is the ap-
proximate solution computed by means of the f-series expansion,
Eq. �6�, up to the second-order term. The diamond symbols �in red�
show the kinetics computed by using the correlation functions, Eq.
�7�, up to the second-order term in the argument of the exponential.
In this expansion the lowest-order term of the two-dot correlation
function has been retained. The approximate kinetics obtained by
decoupling the integrals on the pair-correlation function is also dis-
played as a long dashed line �blue�.
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ln�1 − S� = − Se�1 +
Se

2
H�1 −

3Se

S� 
+

1

2
�S� − 2Se� S�

3Se
3/2�H�3Se

S�
− 1� , �21�

where S�=�Rhc
2 It and H�x� is the Heaviside function. Fur-

thermore, let us define the new variables �=Se /S�3, �
=S��0, and Se=�� �

�0
�3, where �0 is the impingement factor in

Sec. II. The reason for these variables will be clear shortly.
Equation �21� then becomes

ln�1 − S� = −
��3

�0
3 �1 +

��3

2�0
3H�1 − 3

��2

�0
2 

+ � �

2�0
−

1
�27�

H�3
��2

�0
2 − 1� . �22�

We stress that here � is the dimensionless time variable,
whereas � and �0 are parameters. The correlated nucleation
process discussed so far assumes a constant nucleation rate I
during the whole phase transition. This requirement gives
rise to a constraint on the value of the � quantity. In fact, to
ensure a constant value of I, the “hard disk” fractional cov-
erage at the end of the transition �say, at t= tF�, namely,

�
Rhc

2

4 ItF, has to be lower than the jamming limit: S��0.55.
This condition implies S��tF��4S��2.2 and, consequently,
��Se�tF� / �4S��3. We also observe that by using the approxi-
mate jamming point S�= 1

4�0
, the condition S��tF��4S� re-

duces to �F�1, which makes it clear that in this dimension-
less variable the kinetics is confined within �� �0,1�. For a
Poissonian nucleation, S�=0 and Eq. �21� give the KJMA
kinetics

ln�1 − S� = − Se. �23�

The kinetics computed by means of Eq. �22� is displayed
in Fig. 3 as a function of � and for various � parameters

ranging between 1 and 15. In the same figure, the kinetics
computed in the case of a Poissonian nucleation �Eq. �23�� is
also been shown for comparison. The behavior of these
curves is consistent with previous analytical and numerical
computations.41

Although Eq. �3� has been successfully used for describ-
ing the instantaneous growth, here we attempt to use it to
describe the kinetics of the correlated system �Fig. 3�. To this
end we choose a suitable value of the impingement param-
eter � by trial and error. The results of this approach are
shown in Fig. 3. The description of the kinetics appears to be
better the larger the � value is. In particular for � values in
the wide interval 1–15, the � parameter ranges from 0.2 to
0.3. In addition, the impingement parameter exhibits a weak
dependence on �, namely, ��1.34�−0.047. In practice, in this
interval the impingement factor can be considered constant
provided the kinetics is expressed in the dimensionless vari-
ables defined above. The KJMA curve is recovered in the
limit �→�.

Before concluding this section, we propose a different ap-
proach to the determination of the kinetics of growth in the
case of hard-core correlated nucleation. It is based on the
concept of phantom nuclei.

It is well known that nucleation centers scattered at ran-
dom throughout the whole surface are distributed by Pois-
son’s statistics.1 This is not true in the case of hard-core
correlated nucleation since nucleation is forbidden within
nucleation circles �centered at a nucleation site� of radius
Rhc. Nevertheless it is possible to estimate from I�t�, that is,
the rate of the allowed nucleation events, what would be the
nucleation rate in the absence of nucleation constraints; it is

IP�t� =
I�t�

1 − Sc�t�
, �24�

where Sc�t� is the fraction of surface area prohibited to the
nuclei at time t. As a matter of fact, this surface can be easily
computed by resorting to the previous results and by consid-
ering that the number of clusters formed up to t �phantom
included� is N�t�=
0

t I�t��dt� and R�Rhc. For a constant
nucleation rate, I�t�= I and N�t�= It. In addition, we employ
Eq. �3� with �=�0 for estimating the Sc�t� kinetics. Equation
�24� becomes

IP�t� =
I

�1 − �0I�Rhc
2 t�1/�0

. �25�

The next step of our approach is to determine the
“Poissonian extended surface,”

SeP�t� = �a2�
0

t

IP�t���t − t��2dt�

= �a2�
0

t I

�1 − �0I�Rhc
2 t��1/�0

�t − t��2dt�

=
3�

�0
3 �

0

� �� − ���2

�1 − ���1/�0
d��, �26�

that can be integrated to give

FIG. 3. �Color online� Fraction of transformed surface in the
case of correlated nucleation �solid lines� as a function of the di-
mensionless time � and for several values of the � parameter. The
nucleation and growth rates are constants. Each of the three
bunches of curves displays the KJMA solution �Eq. �23�; black
dashed-dotted lines�, phenomenological equation �3� �blue solid
lines�, and the exact kinetics �Eq. �22�; red dashed lines�. From right
to left, the parameter values of each bunch are: �a� �=1, �=0.25;
�b� �=5, �=0.2; and �c� �=15, �=0.2.
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SeP��� =
3�

�0
3 � �

b1
�� −

2

b2
 +

2

b1b2b3
�1 − �1 − ��b3�� ,

�27�

where bn=
n�0−1

�0
. We therefore compute the fractional surface

coverage by resorting to the Poissonian process, i.e., the
KJMA theory, according to

S�t� = 1 − exp�− SeP�t�� , �28�

which has to be compared with the “exact” solution �Eq.
�22��. It is clear that the two kinetics are expected to coincide
provided all the extra nucleation centers introduced into the
forbidden area Sc�t� �for example, the c nucleus in Fig. 1� are
phantoms. Since this is not strictly true, Eq. �28� is an ap-
proximation. Its merit is checked in Fig. 4, where it can be
seen that for ��1 the approximation is very good. Never-
theless, in the framework of the hard-core model, the con-
stant nucleation process is allowed, during the whole transi-
tion, provided ��1. One then concludes that solution �28� is
an excellent approximation for the transition ruled by the
non-Poissonian nucleation presented here.

In addition, in the limit �→� and �→0, Eq. �28� leads to
the KJMA kinetics, Eq. �23�. This is easily seen by studying
the behavior of Eq. �27� at low � values. In fact, Taylor’s
expansion of this equation provides SeP� ��3

�0
3 = 1

3�Ia2t3 and
Eq. �28� reduces to Eq. �23�.

For the sake of completeness, in Figs. 5�A� and 5�B� we
show the behavior of Avrami’s exponent as computed, ana-
lytically, by using Eqs. �27� and �28�. Avrami’s exponent is
defined as usual as the local slope in the graph of ln�−ln�1
−S����� vs ln���, that is, n���=

d ln�SeP�
d ln��� . Panel �A� shows the

function n���, which, being independent of �, is in fact a
universal function. In panel �B� Avrami’s exponent is dis-
played as a function of surface coverage for �a� �=1, �b� �
=5, �c� �=15, and �d� �=100. This graph evidences that the
possibility of describing a strongly correlated system through

a single value of Avrami’s phenomenological exponent is
unrealistic. On the other hand, in the limit of sizable � val-
ues, i.e., small Rhc, the KJMA curve is approached �n=3�. It
is worth noting that the use of a stretched exponential entails
the definition of two phenomenological parameters.

IV. CONNECTION BETWEEN AVRAMI’S SET THEORY
AND THE STATISTICAL MECHANICS OF RIGID

DISKS

For the sake of completeness, it is worth stressing that Eq.
�6� is a particular case of the expression derived by Avrami
in his original paper that, for the 2D case, reads2

1 − S = 1 + �
m=1

�

�− �mSe,m, �29�

where S is the fraction of transformed surface and Se,m is the
extended surface of order m,

Se,m = �
k=m

�
k!

m ! �k − m�!
Sk�, �30�

where Sm� is the contribution to the transformed area due to
the overlaps between m nuclei. With reference to the kinetics

FIG. 4. �Color online� Modeling the phase transition in the case
of nonrandom nucleation by employing the Poissonian extended
surface in the KJMA expression. The nucleation and growth rates
are constants. The exact solutions are displayed as solid lines �blue�;
the dashed lines are the kinetics computed in the framework of the
Poisson process, i.e., KJMA approach. From right to left, the pa-
rameter values of each bunch are: �a� �=1, �b� �=5, and �c� �
=15.

FIG. 5. The Avrami exponent n for the kinetics in Fig. 4 is
displayed. In panel �A� n is plotted as a function of � and it is a
“universal” curve. In panel �B� it is plotted as a function of surface
coverage for �a� �=1, �b� �=5, �c� �=15, and �d� �=100. In the
limit �→�, n=3.
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discussed in Secs. II and III, we stress that Se�Se,1. In the
specific case of clusters having the same size, Eq. �6� shows
that

Se,m =
1

m!
� fm�r1, . . . ,rm��m�r1, . . . ,rm�dr1 ¯ drm.

�31�

Since Eq. �29� has been obtained on the basis of purely
geometrical arguments, it is of general validity; i.e., it also
holds in the case of disk size distribution. Moreover in
Avrami’s first paper, the extended surfaces entering Eq. �29�
were defined without the inclusion of the phantom clusters as
we also did in writing Eqs. �5�–�7�. However, it can be sim-
ply proved that Eq. �29� also holds by including the contri-
bution of phantoms provided the overgrowth process is not
permitted.

The generalization of Eq. �31� for dealing with a disk size
distribution �nonsimultaneous nucleation� of correlated dots
requires the definition of several classes of dots �nucleation
centers�.42 Dots with the same birth time belong to the same
class and, consequently, give rise to nuclei of the same size.
Let us define the m-dot distribution function as
f ijk¯

�m� �r1,i ,r2,i , . . . ,rmi,i
,r1,j ,r2,j , . . . ,rmj,j

,r1,k , . . .�, where
i , j ,k , . . . denote the classes of dots and mi+mj +mk+ ¯

=m is the number of dots being larger, or equal, to the num-
ber of classes. Furthermore we denote with
�ijk¯

�m� �r1,i ,r2,i , . . . ,rmi,i
,r1,j ,r2,j , . . . ,rmj,j

,r1,k , . . .� the to-
tal area �per unitary surface� of overlap of the m disks of
radius Ri ,Rj ,Rk , . . . when their centers are at the stated po-
sitions. The first-order term in Eq. �29� becomes

Se,1 = �
i

Ni� ��1��ri�dri = �
i

Nisi, �32�

where si is the disk area and Ni is the surface density of dots.
In this last equation we made use of the relation f i

�1��ri�=Ni,
which holds in the case of a homogeneous system. The
second-order term in Eq. �29� is attained by considering the
contribution arising from all the distinct couples of dots,

Se,2 =
1

2�
i
� f ii

�2��ii
�2�dr1,idr2,i + �

i�j
� f ij

�2��ij
�2�dr1,idr2,j ,

�33�

where the short notation �ij
�2�=��2��r1,i ,r2,j�, f ij

�2�

= f �2��r1,i ,r2,j� was used. Equation �33� can be rewritten in
the form

Se,2 =
1

2�
i,j
� f ij

�2��ij
�2�dr1,idr2,j . �34�

In like manner, the computation of the third-order term
leads to

Se,3 =
1

2!�i�j
� f iij

�3��iij
�3�dr1,idr2,idr3,j

+ �
i�j�k

� f ijk
�3��ijk

�3�dr1,idr2,jdr3,k

+
1

3!�i
� f iii

�3��iii
�3�dr1,idr2,idr3,i, �35�

which is rewritten according to

Se,3 =
1

3! �i,j,k� f ijk
�3��ijk

�3�dr1,idr2,jdr3,k, �36�

where the i , j ,k indices run over all classes of dots. There-
fore, the extended surface of order m reads

Se,m =
1

m! �
i1,i2, . . .,im

� f i1i2¯im
�m� �i1i2¯im

�m� dr1,i1
dr2,i2

. . . drm,im
,

�37�

where ik is the class index.
Equations �29� and �37� give the kinetics in terms of in-

tegrals over the m-dot distribution functions and the overlap
areas of m disks. However, in analogy to Eq. �5�, the kinetics
can also be expressed in terms of a series of integrals over
the m-dot distribution functions only. One gets

1 − S = 1 + �
m=1

�
�− 1�m

m! �
i1,i2, . . .,im

�
�Ri1

dr1,i1

	�
�Ri2

dr2,i2
, . . . ,�

�Rim

drm,im
f i1i2¯im

�m� , �38�

where the integration domains are now the circles of radii
Ri1

,Ri2
, . . . ,Rim

. It is worth recalling that starting from Eq.
�38� the kinetics can be further expressed in exponential
form by means of the cluster expansion of the distribution
functions in terms of m-dot correlation functions.42

In the case of a Poissonian distribution of dots, Eq. �29�,
together with Eq. �37�, must coincide with the KJMA solu-
tion

1 − S = 1 + �
m=1

�
�− 1�m

m!
Se,1

m � exp�− Se,1� , �39�

which implies Se,m= 1
m!Se,1

m .
It is instructive to verify that the extended surface of or-

ders 1 and 2 in Eq. �37� actually reduces to Se,1 and
Se,1

2

2 ,
respectively. Furthermore, in the case of circular disks, from
Eq. �32�,

Se,1 = �
i

Ni�Ri
2, �40�

where Ri is the disk radius.
The equality between the first-order terms of the two se-

ries has already been demonstrated by exploiting the homo-
geneity of the system �Eq. �32��. As far as the second-order
term is concerned �m=2�, the demonstration reduces to the
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computation of the overlap between two disks of different
radii, say, R1 and R2, where R1�R2 is assumed. Since the
distribution of dots is random throughout the entire space,
then f12

�2�=N1N2 and the computation of Eq. �34� implies the
estimate of the integral

I0 = N1N2� ��2��r1,r2�dr1dr2 = N1N2� 2�rdrA2�R1,R2,r� ,

�41�

where A2�R1 ,R2 ,r� is the overlap area of the two disks at
relative distance r. One observes that I0 is just proportional
to the average value of the overlap area between a pair of
disks. A scheme of the typical configurations of two disks, in
relation to the relative distance r, is shown in Fig. 6�a�. We
underline that, since the growth law is linear �R�t− t��=a�t
− t��, where t� is the birth time of the nucleus�, the over-
growth phenomenon does not occur. Let us now consider the
transformation of a nucleus in a phantom, that is, the “cap-
ture” of a smaller dot �radius R2� by a larger dot �radius R1�
owing to the growth. In order that the nucleus with radius
R2=a�t− t2� be a phantom, the condition t2� t̃ has to be ful-

filled, where t̃ satisfies the equation r=a�t̃− t1�, with r as the
relative distance between the two nuclei. Therefore, the fol-
lowing inequality holds: R2=a�t− t2��a�t− t1�−r=R1−r,
namely, r�R1−R2, which means that the second disk �R2� is
completely covered by the first one �R1�. Conversely, a
nucleus placed at r�R1−R2 will never be captured by the
first nucleus. It follows that, although r spans the whole in-
terval 0�r��, the overlap area will be different from zero
only in the range 0�r�R1+R2. The area A2 is estimated
according to �see Fig. 6�a��

A2�R1,R2,r� = �R2
2�

0,R1−R2
�r�

+ ��R2
2 + 2�R1

2�
�1,2�r�

1
�1 − �2d�

− R2
2�

�1,2�r�

1
�1 − �2d����

R1−R2,�R1
2−R2

2�r�

+ 2�R1
2�

�1,2�r�

1
�1 − �2d�

+ R2
2�

�2,1�r�

1
�1 − �2d����R1

2−R2
2,R1+R2

�r� ,

�42�

where �i,j�r�= r
2Ri

+
Ri

2−Rj
2

2rRi
, �1,2�r�=

R1
2−R2

2

2rR2
− r

2R2
, and the charac-

teristic function �a,b�x�=1 for x� �a ,b� and ��x�=0 other-
wise. The determination of the mean value of the overlap
area reduces to the computation of the following integrals:

I1 = 2��
R1−R2

R1+R2

rdr�
�1,2�r�

1

2R1
2�1 − �2d� , �43�

I2 = 2���R1
2−R2

2

R1+R2

rdr�
�2,1�r�

1

2R2
2�1 − �2d� , �44�

and

I3 = − 2��
R1−R2

�R1
2−R2

2

rdr�
�1,2�r�

1

2R2
2�1 − �2d� . �45�

These integrals can be easily solved by inverting the order
of integration, which implies the inversion of the ��r� and
��r� functions depicted in Fig. 6�b�. In particular Eq. �43�
reads

I1 = �
�min

1

4�R1
2�1 − �2d��

r−���

r+���

rdr , �46�

where r+��� and r−��� �r+�r−� are the two roots of the equa-

tion �=�1,2�r� and �min=
�R1

2−R2
2�1/2

R1
�Fig. 6�b��. The I1 integral

then becomes

I1 = 8�R1
4�

�min

1

��1 − �2��R2

R1
2

− �1 − �2�d� . �47�

Following a similar computation pathway, the other two
integrals can be recast in the form

�

FIG. 6. �Color online� �a� Schematic representation of the con-
figurations of a pair of overlapping disks of radii R1 and R2 as a
function of relative distance r. The values defining the integration
domains of the Ii integrals are also shown. For r�R1−R2, the
smaller nucleus is a phantom. �b� Behavior of the �1,2�r�, �2,1�r�,
and �1,2�r� functions which enter the Ii integrals. The minimum of
the �1,2�r� function is marked. The integration paths, after the order
of integration has been inverted, are displayed through arrows. The
roots of the equations �=�1,2�r�, �=�2,1�r�, and �=�1,2�r�, required
to invert the order of integration, are also shown. Specifically, they
are two for �1,2 and one for both �2,1 and �1,2.
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I2 = 4�R2
4�

0

1
�1 − �2����R1

R2
2

− �1 − �2� + �2�d�

�48�

and

I3 = − 4�R2
4�

0

1
�1 − �2����R1

R2
2

− �1 − �2� − �2�d� .

�49�

The evaluation of I0 eventually reduces, with I1= I2+ I3

= �2

2 R2
4, to

I0 = N1N2�I1 + I2 + I3 + �2R2
2�R1 − R2�2

+ �2R2
2�R1

2 − R2
2 − �R1 − R2�2�� = N1N2�2�R1R2�2.

�50�

Specifying Eq. �50� in Eq. �34�, one ends up with the
expected result

Se,2 =
1

2�
i,j

NiNj��Ri
2���Rj

2�

�
1

2�
i

Ni��Ri
2��

j

Nj��Rj
2� =

1

2
Se,1

2 . �51�

We point out that the well known Austin-Ricket �AR�
equation �S=

Se

1+Se
� is obtained by using Eq. �1� for �=2. Its

Taylor expansion is S=�m=1
� �−1�m−1Se,1

m . It turns out that
Se,m=Se,1

m , which compares with the KJMA solution where
Se,m= 1

m!Se,1
m . The question now arises about the possibility to

justify the AR equation in the framework of the theory of
phase transformation ruled by spatially correlated nucleation.
On the basis of Eq. �37�, the condition Se,m=Se,1

m therefore
implies

Se,1
m =

1

m! �
i1,i2, . . .,im

� f i1i2¯im
�m� �i1i2¯im

�m� dr1,i1
dr2,i2

. . . ..drm,im
,

�52�

subjected to the constraint �f-function normalization�

� f i1i2¯im
�m� dr1,i1

dr2,i2
¯ drm,im

= ni1
ni2

¯ nim
, �53�

where nik
denotes the number of dots. In addition

Se,1
m = �

i1,i2, . . .,im

� �i1i2¯im
�m� dr1,i1

dr2,i2
. . . drm,im

. �54�

At present we cannot demonstrate whether or not Eqs.
�52�–�54� can be simultaneously satisfied by an appropriate
set of f �m� distribution functions. If the answer were in the
affirmative, the AR equation would imply the non-
Poissonian distribution of nuclei as hypothesized in Ref. 43.
Moreover, one has to bear in mind that a “repulsive” corre-
lation among nuclei implies, as a function of Se,1, a “faster”

evolution than the KJMA kinetics. Since the AR equation
evidences an opposite behavior, it would imply an “attrac-
tive” correlation.30

V. CONCLUSIONS

In conclusion, we have shown that Eq. �1� can be success-
fully applied for describing instantaneous cluster growth.
The link between the phenomenological parameter � and the
pair distribution function has been established. In this case
the phenomenological equation is an excellent approxima-
tion for �0�0.59. The physical meaning of the impingement
factor has been evidenced by means of a stochastic analysis
based on the m-dot distribution functions. The same equation
can be employed for modeling spatial correlated nucleation
according to the hard-core model when both growth and
nucleation rates are constant. Under these circumstances, the
impingement factor is in the range 0.2���0.3. The connec-
tion between Avrami’s set theory and the statistical thermo-
dynamics of rigid disks has been established. Our analysis
demonstrates that if the deviation between AR and KJMA
kinetics are ascribed to correlation effects, then correlation
has to be attractive.

APPENDIX

It is possible to show that scaling properties of the Q��X�
probability also hold in the case of simultaneous nucleation
of correlated nuclei according to hard-core model. Under
these circumstances, nuclei cannot be at a distance shorter
than Rhc. We recall that Q��X� is the probability that no
nuclei are in the circle of radius X. The n-particle distribution

functions can be written in the form fm=Nmf̃m, where f̃m is a
function of the particle coordinates, hard-core radius �Rhc�,
and particle density �N�. Since the quantity fmdr1¯drm is

scaling invariant, the same property is satisfied by the f̃m
functions. Therefore, for a homogeneous system, these func-

tions are expected to be of the form f̃m�
r12

Rhc
, . . . ,

r1m

Rhc
,NRhc

2 �,
where r1j = 	r j −r1	 are the relative coordinates. Moreover,
through the change in variables ri→

ri

X �ri�, the integration
domain in Eq. �5� is the unit circle and the Q expression
becomes

Q��X� = 1 + �
m=1

�
�− 1�m

m!
Se

m�
�1

f̃m�S�,
Xr12�

Rhc
, . . . ,

Xr1m�

Rhc


	dr1�
2dr12�

2
¯ dr1m�

2 , �A1�

where polar coordinates have been employed �dr=�dr2�,
Se=�NX2 is the extended surface, and S�=�NRhc

2 . Equation
�A1� can be rewritten as

Q��X� = 1 + �
n=1

�
�− 1�n

n!
hn�S�,

Se

S�Se
n. �A2�

For X=Rhc �Se=S��, the probability Q��X� is a function of Se.
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